MACC1 decreases the chemosensitivity of gastric cancer cells to oxaliplatin by regulating FASN expression

نویسندگان

  • Jiangman Duan
  • Lishan Chen
  • Minyu Zhou
  • Jingwen Zhang
  • Li Sun
  • Na Huang
  • Jianping Bin
  • Yulin Liao
  • Wangjun Liao
چکیده

The effect of chemotherapeutic agents is limited as a result of drug resistance, which demands prompt solutions provided by clinical studies. To date, the underlying mechanisms of chemotherapy resistance are relatively unknown. Metastasis-associated in colon cancer 1 (MACC1) is an oncogene associated with the progression and prognosis of gastric cancer (GC). Bioinformatic analysis revealed that MACC1 is positively associated with fatty acid synthase (FASN), a major enzyme of lipogenesis, and drives chemoresistance to oxaliplatin in GC. Similar findings were demonstrated in two GC cell lines (BGC-823 and MKN-28) with MACC1 ectopic expression. We next employed FASN inhibitor C75 or siFASN (small interfering RNA targeted to FASN) to block endogenous fatty acid metabolism and it was revealed that cell proliferation and chemoresistance to oxaliplatin induced by MACC1 upregulation were attenuated by FASN blockade to various extents. Conclusively, these outcomes highlight a novel role of MACC1 in GC cell lipogenesis, and suggest that MACC1 may be an attractive target to decrease oxaliplatin resistance in GC.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effects of ERCC1 expression levels on the chemosensitivity of gastric cancer cells to platinum agents and survival in gastric cancer patients treated with oxaliplatin-based adjuvant chemotherapy

Excision repair cross-complementing 1 (ERCC1) is reported to be involved in the sensitivity of cancer cells to platinum-based chemotherapy. The present study was designed to evaluate the effects of ERCC1 expression on the chemosensitivity of platinum agents in gastric cancer cell lines, and on survival in gastric cancer patients treated with surgery followed by oxaliplatin-based adjuvant chemot...

متن کامل

Overexpression of Lin28 Decreases the Chemosensitivity of Gastric Cancer Cells to Oxaliplatin, Paclitaxel, Doxorubicin, and Fluorouracil in Part via microRNA-107

Higher Lin28 expression is associated with worse pathologic tumor responses in locally advanced gastric cancer patients undergoing neoadjuvant chemotherapy. However, the characteristics of Lin28 and its mechanism of action in chemotherapy resistance is still unclear. In this study, we found that transfection of Lin28 into gastric cancer cells (MKN45 and MKN28) increased their resistance to the ...

متن کامل

Evaluation the effects of diclofenac and oxaliplatin on the expression of caspase8 and caspase9 genes in Colorectal Cancer cell line(SW480)

Background and Aim: Induction of apoptosis is one of the main goals in the production of anticancer drugs. Recently, the evaluation of the association between nonsteroidal anti-inflammatory drugs (NSAIDs) and apoptosis in cancer cells has been promising. Caspase8, caspase9. Methods: In this experimental-laboratory study, sw480 colorectal cancer cells were treated with different concentrations o...

متن کامل

Histone deacetylase inhibitor, trichostatin A, increases the chemosensitivity of anticancer drugs in gastric cancer cell lines.

Epigenetic alterations of the histone acetylation play an important role in the regulation of gene expression associated with cell cycles and apoptosis that may affect the chemosensitivity of gastric carcinomas. Recently, a histone deacetylase inhibitor, trichostatin A (TSA), was proven to be a chemo-sensitizer on human erythroleukemia cells. With the aim of improving the chemotherapeutic effic...

متن کامل

Downregulation of Kinesin Spindle Protein Inhibits Proliferation, Induces Apoptosis and Increases Chemosensitivity in Hepatocellular Carcinoma Cells

Background: Kinesin spindle protein (KSP) plays a critical role in mitosis. Inhibition of KSP function leads to cell cycle arrest at mitosis and ultimately to cell death. The aim of this study was to suppress KSP expression by specific small-interfering RNA (siRNA) in Hep3B cells and evaluate its anti-tumor activity. Methods: Three siRNA targeting KSP (KSP-siRNA #1-3) and one mismatched-siRNA (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2017